

Electric Circuits Course Code: ECE 161 Fall Semester Exam.

Biomedical Engineering Program Level 100

Exam Date: 17-1-2015 Allowed Time: 2 Hours

Attempt all questions. Assume any missed data. Full mark is 50

- **Q.1.a)** The terminal voltage and terminal current were measured on the device shown and the values of v_i and i_i are tabulated.
 - i. Construct a circuit model of the device
 - ii. Predict the power this device will deliver to a 10Ω resistor. [7 Marks]
- **Q.1.b)** Use Kirchhoff's laws and Ohm's law to find the voltage v_o as shown in figure. Show that your solution is consistent with the constraint that the total power developed in the circuit equals the total power dissipated.

[7 Marks]

Q.1.c) Find the current i_{ϕ} in the circuit shown. Find the power dissipated in the 100Ω resistor. Find the power developed by the 4A current source. **[7 Marks]**

$v_t(V)$	$i_t(A)$
100	0
180	4
260	8
340	12
420	16

$$\begin{array}{c|c}
\hline
i_s \\
\hline
i_o \\
-
\end{array}$$

- $^{\circ}$ Q.2.a) If a 8K Ω resistor is connected between terminals a & b, use Thevenin equivalent to find the power dissipated in this resistor. [7 Marks]
- **Q.2.b)** The switch in the circuit shown has been closed for a long time before it is opened at t=0. Find
- i. $i_t(t)$ for $t \ge 0$
- ii. $i_o(t)$ for $t \ge 0$
- iii. $v_{\alpha}(t)$ for $t \ge 0$

[7 Marks]

Q.2.c) For the circuit shown, $V_o=0$, $I_o=-12.25mA \ . \label{eq:localization}$

- Find the value of R that results in a critically damped voltage response.
- ii. Calculate v(t) for $t \ge 0$
- iii. Plot v(t) versus t for $0 \le t \le 7ms$ [7 Marks]

Q.3.a) Use mesh current method to find the values of V_1 , V_2 , and V_3 in the circuit shown in figure. **[7 Marks]**

Q.3.b) An electrical load operates at 240V rms. The load absorbs an average power of 8KW at a lagging power factor of 0.8.

- i. Calculate the complex power of the load.
- ii. Calculate the impedance of the load.

[7 Marks]

Q.3.c) The independent current source in the circuit shown generates zero current for t < 0 and a pulse $10te^{-5t}A$ for t > 0.

- i. At what instant of time is the current maximum?
- ii. Express the voltage across the terminals of the 100 mH inductor as a function of time.
- iii. Sketch the current, voltage, energy, and power waveforms. [7 Marks]

My best wishes to all of you!

Assis. Prof. Hossam fl. Din Moustafa